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Abstract

The aim of this degree project is to investigate alternatives to the relational
database paradigm when storing hierarchical geospatial data. The docu-
ment paradigm is found suitable and is therefore further examined. A
benchmark suite is developed in order to test the relative performance of
the paradigms for the relevant type of data. MongoDB and Microsoft SQL
Server are chosen to represent the two paradigms in the benchmark. The
results indicate that the document paradigm has potential when work-
ing with hierarchical structures. When adding geospatial elements to the
data, the results are inconclusive.
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Sammanfattning

Det här examensarbetet ämnar undersöka alternativ till den relationella
databasparadigmen för lagring av hierarkisk geospatial data. Dokument-
paradigmen identiferas som särskilt lämplig och undersöks därför vidare.
En benchmark-svit utvecklas för att undersöka de två paradigmens rela-
tiva prestanda vid lagring av den undersökta typen av data. MongoDB
och Microsoft SQL Server väljs som representanter för de två paradigmen
i benchmark-sviten. Resultaten indikerar att dokumentparadigmen har
god potential för hierarkisk data. Inga tydliga slutsatser kan dock dras
gällande den geospatiala aspekten.
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Chapter 1

Introduction
This chapter begins by introducing relational databases, their limits and a
problem related to those limits. NoSQL databases are then presented as a
potential solution in need of further investigation. Lastly, the problem is
formally defined and a study is proposed.

1.1 Problem Background

Relational databases are based on the relational model proposed by E.F
Codd in 1970 [5]. This kind of database emphasizes consistency and fault
tolerance, as can be seen in the ACID1 properties central to the relational
paradigm. From their early introduction on the market, relational
database management systems (RDBMS) dominated the database world
for a long time. Only during the past decade has there been any
significant interest in alternative approaches.

The desire for new types of databases mainly stems from the trade-offs
incurred by adhering to the relational model and ACID properties. These
trade-offs include difficulties in parallelizing write-operations and
scaling the database over several machines. The adherence to the
relational model also makes for rigid data relationships, as all data must
fit into the database’s schema definition.

With the rise of Web 2.0 there has been an explosion in the amount of
collected data, often referred to as "Big Data". Being huge, sparse, poorly
structured and often in need of heavy analyses in order to be useful, this
data has been a driving factor in the development of alternatives to the
relational paradigm [23]. Geospatial information is one type of data that
is often present in big data. In the year 2000, 80% of all corporate data

1Atomicity, Consistency, Isolation, Durability. Further explained in the theoretical
chapter.

1



2 CHAPTER 1. INTRODUCTION

had spatial elements [15], a figure which is likely even higher today
considering the many ways to retrieve a user’s location. The geospatial
parts can also add additional challenges to a database, such as unusually
large records and deep hierarchies.

The term "NoSQL" was coined in 1998, but did not see wide usage until
its popularization during a database meetup in 2009 [34][1]. The term is
generally seen as a shortening of "Not only SQL", referring to a database
with at least some characteristic not present in a typical relational
database.

NoSQL databases have risen in popularity during the past decade as an
attempt to make up for the shortcomings of the relational paradigm,
especially when working with big data. One of the main design ideas in
popular NoSQL database management systems (DBMS) is that by
loosening the ACID requirements, the database can be improved in other
aspects. Another key observation is that the optimal choice of data
model depends on the structure of the data being stored and its access
patterns. Altogether these observations have given rise to several
paradigms of NoSQL, each optimizing for different use cases.

Triona is a Swedish IT company specializing in logistics and
infrastructure related solutions. As such, there is often an element of
geospatial data in their systems. One of their relational databases has
been identified as exerting several of the characteristics problematic for
RDBMSs. The data contains elements of geospatial and sparse data, with
hierarchical data structures and inheritances. This data might therefore
benefit from residing in another type of database.

This study attempts to investigate whether a viable alternative to
relational databases exists for the dataset described from Triona. As
such, the interest lies in finding a NoSQL paradigm suited for
hierarchical data with geospatial elements. Focus is put on the relative
performance of the NoSQL paradigm and relational databases. Most
information on the area today comes in the form of blog posts and
first-party publications, making it difficult to draw reliable conclusions
solely from reading. This study therefore attempts to compare the
performances through a benchmarking approach.
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1.2 Problem Definition

The aim of the study is to investigate the relative performances of the
relational paradigm and the NoSQL paradigm best suited to hierarchical
geospatial data. Performance is measured in terms of throughput and
latency. The study begins with a survey of existing NoSQL paradigms,
evaluating their respective potential for hierarchical geospatial data. As
further explained in the next chapter, the document paradigm is deemed
most suitable and is therefore chosen.

Next, the relational and the document paradigm each get one DBMS
chosen as their representative. The study attempts to choose these
DBMSs to be as representative of the paradigms’ potential as possible. A
survey of DBMSs in the paradigms is used as the basis for the decision.
To measure the performance, a benchmark suite is created. The
real-world database from Triona is used as the dataset for that suite. The
two representatives each get populated with appropriate models of the
dataset. The suite is finally run against the two DBMSs to obtain results.

The research question of the study therefore becomes:

"How do relational and document databases compare in terms
of throughput and latency when storing hierarchically structured
geospatial data on a single node?".

Due to time constraints, the study is limited to comparing single-node
executions. The study is also limited to choosing one NoSQL-paradigm
for investigation beyond the initial survey. It is further limited to
choosing one DBMS for each paradigm to act as representative in the
performance tests. The study is also limited to a single modelling
technique for each of the two paradigms. Lastly, the study is limited to
working with the dataset from Triona and modified versions of that set.

The study aims to contribute to the field of databases and geographic
information. The study does not touch on any ethically problematic
areas, and so does not further discuss that topic. The study also does not
touch on any issue related to sustainability, other than the possible
resource savings that can come from an improved database performance.



Chapter 2

NoSQL Paradigms
This chapter establishes which NoSQL paradigm is most suitable for working
with hierarchical geospatial data. The chapter begins by explaining key concepts
necessary in the context. It then presents the most prevalent NoSQL paradigms
and picks one based on that material.

2.1 Terminology

Horizontal Scaling is the extent to which a system can gain performance
by distributing its data and workload onto several, non-memory sharing
machines [4].

The CAP Theorem states that when distributing a database over several
nodes, it is impossible to achieve more than two of the three properties:
Consistency, Availability, Partition tolerance. Consistency in this context
means that the system behaves as if all operations were sequentially
executed on a single node. Availability means that all requests to a
healthy part of the system will eventually be served. Partition tolerance
means that if some part of the system fails, the other parts continue to
operate [14].

ACID is an abbreviation of Atomicity, Consistency, Isolation, Durability.
These four properties together are intended to guarantee the validity of
data after transactions, even under errors such as power failure.
Atomicity means that either the entire transaction happens or none of its
changes occur. Consistency in this context refers to transactions always
leaving the database in a semantically valid state. Isolation says that all
concurrent operations must behave as if they were executed sequentially.
Finally, durability ensures that once a transaction is committed, it must
occur.

4
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BASE is an abbreviation of Basically Available, Soft state, Eventually
consistent. The abbreviation is not as explanatory, but in essence
describes an abandonment of ACID guarantees in favor of increased
availability. A BASE system cannot guarantee consistency at a specific
point in time, but will always eventually reach such a state if given
enough time to stabilize [1].

2.2 Established NoSQL Paradigms

NoSQL is a wide term, essentially referring to any database that is not
purely SQL. There are however a few paradigms which can be used to
classify the common NoSQL DBMSs. Shared by all of the listed
paradigms is a lowered emphasize on consistency in return for higher
availability in terms of the CAP theorem. NoSQL databases also tend to
follow BASE rather than ACID to further improve availability. The exact
definition of each paradigm can vary slightly over the literature. The
descriptions given here attempt to incorporate only the most agreed
upon features of each one.

Key-Value databases consist of a long list of records (values) which can
be accessed using the corresponding keys. The access uses a hash of the
key and can therefore be performed as an amortized O(1) operation [27].
This type of database completely lacks a schema, making it highly
flexible. It is also memory efficient since none-applicant values are
omitted from a record altogether, instead of storing it as NULL. In
contrast to most other paradigms, values are generally opaque to the
system. This allows for simpler DBMS implementations but also makes
the system primitive. With opaque values, the database cannot be
indexed, and consequently cannot be efficiently queried based on its
values. With these limitations and the lack of a schema, the task of
creating structure and efficiency is mostly left to the user.

Document databases store data in the form of semi-structured
documents, such as JSON or XML. Like key-value stores, these
documents are free of schemas and can be accessed with a key called the
unique document identifier. Unlike key-value stores, document
databases have transparent values, allowing for indexing and
content-based querying. Document databases are built around the idea
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of keeping related data in the same document when possible. This leads
to fast reads, but may require some redundancy for certain data
structures.

Graph databases store data in the form of graphs. The nodes in this
graph are records containing attributes. A unique idea in this paradigm
is that relationships (or edges) too can contain attributes of their own. In
some graph databases, edges are even first-class citizens in the data
model [21]. Depending on the implementation, graph databases may
offer O(1) neighbour transitions without the need for indexes. Common
applications for this type of database are social networks,
recommendation services or other types of systems where neighbour
transitions are frequent. Graph databases are among the least adopted
paradigms treated in this thesis [22].

Wide-Column databases have several similarities to the relational
paradigm. Both store their entries as rows which in turn contain values
for predefined columns. Instead of relational tables, this paradigm uses
the concept of column families to house its rows. One difference between
the two is that column-families do not need to store NULL values for
unpopulated attributes [27]. This is a subtle difference that has big
implications when dealing with sparse data. Where a relational database
is filled mostly with NULL values, a wide-column database can
represent the same data being almost empty. Several popular
wide-column databases are also built on top of distributed file systems,
having horizontal scaling built into the architecture. In general, these
databases are built with huge and distributed applications in mind.

Object databases store objects from some specific object-oriented
programming language. This approach gives rise to several advantages
and disadvantages. Advantages include consistent data representation
throughout the application and removing the time used to convert
database objects to application objects. A clear disadvantage is that the
database gets tied to a specific programming language. Another
disadvantage is that the database inherits any limitation present in the
used object type [27]. The object paradigm is currently the least adopted
of the ones mentioned [22].
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2.3 Choice of Paradigm

As the study only intends to investigate one NoSQL paradigm, a
decision has to be made regarding which one to pick. Performance is the
core focus of the study and is therefore the main concern when selecting
a paradigm. To maximize the likelihood of a selecting a well performing
paradigm, the three main criteria for the candidates are:

• Having some feature that can improve on relational databases
when modelling hierarchies.

• Having an overall design that allows for efficient handling of
geospatial data.

• Having mechanisms to efficiently deal with sparse data.

Starting with geospatial indexing, key-value stores can more or less be
removed from the discussion. Since this paradigm generally does not
support indexing at all, its DBMSs are deemed unable to perform
efficient geospatial queries. The paradigm is niched towards situations
where the user has a good idea of which record he wants, which is not
the case here. While the object paradigm does not inherently prohibit
spatial operations, none of the established DBMSs of the paradigm
natively support it. The remaining paradigms show no immediate
obstacles for geospatial data.

The second criterion revolves around modelling hierarchies. Graph
databases offer O(1) neighbour transitions. This allows them to easily
traverse hierarchies, making them suitable. Document databases can
nest entire hierarchies in the same document. Unless the hierarchies are
very large this too should provide fast access and easy modelling.
Wide-Column databases however do not offer any feature that can
improve significantly on the relational paradigm in this regard.
Wide-Column databases are therefore removed from consideration.

The last criterion is to provide some mechanism to efficiently deal with
sparse data. Both document and graph databases fulfill this criterion
since they offer schema-free storage. With schema-free storage, only
populated properties have to be defined for a record, shrinking the size
of records with unpopulated properties.
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With both graph and document databases fulfilling all criteria, the final
decision is based on overall feasibility. Since document databases are
more widely adopted, they are deemed more likely to succeed in
practice, regardless of the two paradigms’ equal theoretical potential.
The document paradigm is therefore chosen. The higher level of
adoption also makes the results interesting to a larger crowd. Graph
databases will therefore not be further considered in this study, but are
still of high interest for any future study.



Chapter 3

Theoretical Background
This chapter begins by introducing the relational and document paradigms. The
chapter then presents the candidate representatives for the document paradigm.
Finally, some theory behind data modelling and benchmarking is given.

3.1 Relational Databases

Relational databases are based on the relational model presented by E.F
Codd in 1970 [5]. Relational databases structure their data according to a
per-database defined schema. The schema defines a number of
containers called tables. Each table is further defined to have a number
of columns. A column defines the name and datatype of an attribute that
every record in this table must contain. Records, also called rows, can
now be inserted into the tables. Each row will consist of values
corresponding to each column in its table. If a column is not applicable
to a specific row, the value NULL can be specified.

Each table may define one or a set of columns to be the table’s primary
key. The primary key is used to uniquely identify each row in the table,
and therefore must be unique for every record. A table can also define
one or several foreign keys to create relationships between rows. A
foreign key is a column or a set of columns used by one row to uniquely
identify another row [9].

To manipulate the database, the relational paradigm makes use of the
Structured Query Language (SQL). SQL defines the four core statements
INSERT, UPDATE, SELECT & DELETE. These are used to add, modify,
fetch and remove data from the database. To apply conditions to these
statements, SQL defines several clauses. One of the most important ones
is the WHERE clause, used to specify which rows a query should affect.
Another important clause is JOIN. JOINs are used to combine two or

9



10 CHAPTER 3. THEORETICAL BACKGROUND

more rows based on a relationship between their columns. The JOIN
clause may be used on any set of columns, but is most commonly used in
combination with foreign keys.

Viewed as an abstract model, Codd’s relational model can perform all of
its operations instantly. In order to fully use all of the features in the
relational model, this is an essential property. Implementations, of
course, cannot complete operations instantaneously. Instead, the
relational paradigm uses ACID transactions to mimic this behaviour.
While these transactions are not instantaneous, they are atomic,
all-or-nothing operations that can be treated much like an instant
operation in some regards. In order to provide these transaction
guarantees in a multi-threaded environment, RDBMSs use locks. These
locks can be placed on single rows or entire tables to prevent other
threads from accessing data that is currently being modified. If two
threads are interested in the same record, these locks can reduce
performance.

Database normalization is the practice of organizing data into specific
patterns called normal forms. Codd introduced several different normal
forms as part of his relational model. While differing slightly, they all
essentially consist of constraints that decrease redundancy and protect
against certain data inconsistencies [9]. Whether normalization is
technically part of the relational paradigm is debatable. It is however a
widespread practice and links closely to the ACID properties
fundamental to all relational databases.

Relational databases prioritize consistency over availability in terms of
the CAP theorem. This makes them naturally apt at avoiding data
inconsistencies and race conditions. The strictly defined query and
modelling languages are designed to allow for efficient software
implementations. Lastly, having been the goto paradigm in the industry
for several decades, RDBMSs have seen a much larger development
effort than any other paradigm. This means that they are generally
highly optimized.

The strict design choices of relational databases have downsides as well
though. The ACID requirements limit RDBMSs ability to deal with high
loads in several ways. Since all operations must appear to be performed
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in isolation, high parallelization can be difficult to achieve. Requirements
on consistency and durability also limit horizontal scaling, requiring a
single, increasingly powerful computer as the load increases. Working
with sparse data, RDBMSs need to store a high number of NULL values
as every row must have a value for every column.

Another type of data that does not map perfectly with the relational
paradigm is inheritance hierarchies. In this type of data, there is a finite
and clearly defined set of subtypes of an entity. The root in the hierarchy,
which may or may not be a concrete entity subtype in itself, contains
those properties applicable to all subtypes. The children of the root,
which also may or may not be concrete entity subtypes, continue adding
properties applicable to its children. The leaves of the hierarchy must be
concrete entity subtypes as no other entities inherit from these. Fowler
[12] describes three distinct methods for modelling inheritance
hierarchies in relational databases:

• Single Table Inheritance - Use a single table to represent a merge
of all subtypes. This approach minimizes the number of tables and
centralizes data. A downside is a large number of NULL values
being stored wherever columns do not apply to every row.

• Class Table Inheritance - Use one table for each entity subtype,
whether it is a concrete or an abstract type. This approach means
that tables will only contain columns applicable to all of its rows,
eliminating the need to use NULL values for this purpose. This is
the most normalized approach of the three. The downside is that a
concrete entity may have its columns spread out over many levels
in the hierarchy.

• Concrete Table Inheritance - Use one table for each concrete
subtype only. This approach compromises between the other two.
Tables will only contain columns applicable to their subtypes and
all data specific to one entity type will be gathered in a single table.
The downside to this approach is a high level of redundancy, as
columns shared by several subtypes are defined in several tables.

3.1.1 Microsoft SQL Server

Microsoft SQL Server is an RDBMS created by Microsoft. This study uses
it as the representative for the relation paradigm, due to its leading
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performance and geospatial support. The choice will be further
explained in the next chapter. This RDBMS closely follows the relational
paradigm and provides support for SQL querying. Indexes can be
created on common data types such as numbers, dates and text.
Geospatial indexing is also supported [26]. The geospatial operations
available are the basic within, intersects & near as well as contains,
overlaps, touches and equality[25]. Like most other DBMSs, it uses a
B-Tree index structure [26].

3.2 Document Databases

This section describes document databases in more detail, highlighting positive
and negative sides of the paradigm. Towards the end, a short description is given
of each of the most established DBMSs in the paradigm. MongoDB is given
more space, as it is later chosen to represent the paradigm.

Document databases store data in the form of documents. A document is
a semi-structured record of a format such as JSON or XML. Each
document consists of a set of fields that contain either values or nested
documents. Several documents can be grouped together into containers
called collections [16]. These collections differ a lot from relational tables.
For example, collections put no requirements on which fields or
datatypes each document should contain. This means that every
document in a database could have a unique set of fields. The only
exception to the rule is that every document must have a unique
identifier.

The properties mentioned so far are similar to key-value stores. The big
difference is that the content of a document is transparent to the
document database, as opposed to the values in a key-value store. This
allows document databases to provide common features absent in
key-value stores, such as indexing and a query language. To be able to
efficiently use these features, while keeping the database schema-less,
some level of structure among documents is needed in the database
though. As opposed to the relational paradigm, the document paradigm
mostly leaves this task to the user, for better and for worse.

The query capabilities can vary slightly between different document
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database implementations. However, a big part of the paradigm is to not
rely on a JOIN clause for combining data. Instead, the query language is
built around the practice of storing all related data in the same document
when possible, avoiding normalization. Not relying on normalization
also opens up for a higher level of data duplication wherever it can
speed up the database. These ideas tie in closely with the paradigm’s
prioritization of availability over consistency. Positive effects of this
strategy are an increased speed in reading data and a simplified data
reading process. Storing related data together can also give a more
intuitive match between the data model and the entities being modelled,
eliminating the need for entity-relational mappings. Downsides include
more complicated and potentially slower updates when data is
duplicated. With the decreased focus on consistency, it is also possible to
reach states where duplicated data is inconsistent across the database.
Duplication will also increase the size of the database. However, with the
size of modern memories compared to the speed of modern processors,
the document paradigm still recognize this to be a valuable trade-off.
The trade-off is mostly made viable because of the relaxed consistency
model that comes from the paradigm’s BASE-philosophy.

To model data in more sophisticated ways than mentioned so far, the
document paradigm offers two concepts; document embedding and
document referencing. Starting with document embedding, this is a
technique made possible from the use of a semi-structured record
format. Document embedding is the practice of nesting documents
inside each other. The parent document stores a nested child document
as if it was a piece of data like any other. This nesting can be performed
recursively, although creating top-level documents that are too large
would be inefficient in practice. The nested sub-document is stored and
accessed together with its parent, eliminating the need to use a JOIN
clause when fetching them together. The main application for document
embedding is to store related data in the same record, while still
maintaining some structure to it. Advantages to embedding include fast
and simple retrieval, since the data is already grouped and organized. A
major disadvantage is that not all relationships can be modelled in this
way. For 1:1 relationships, embedding is a straightforward process. For
1:N relationships, lists can be used to embed multiple documents.
However, when faced with N:1 or N:M relationships, document
embedding encounters issues. If embedders and embeddees are distinct
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subsets, these relationship cardinalities can still be modelled through
embedding, by duplicating data. In other cases however, these
relationships cannot be modelled through embedding at all.

When document embedding is impossible or otherwise undesirable,
document referencing can be used instead. In this approach, documents
store a copy of another document’s unique identifier. The reference is
stored like any other value, meaning it can be placed in lists, indexed
and queried on. While similar to relational foreign keys in some ways,
document references are generally seen as a looser connection. Also,
because they are not backed up by a JOIN clause, these references have
less expressive power when querying. Records can for example not be
selected based on the content of their referenced documents. The
advantage of document referencing is that it can model any relationship
cardinality. It also helps to prevent documents from growing into
unmanageable sizes. The disadvantages are mainly that references are
slower and offer less power when querying than embedding does.

3.2.1 Available Document Databases

This section provides brief descriptions of the currently most popularly
ranking document DBMSs according to db-engines.com [22]. The section
has been filtered to only include DBMSs with native support for
geospatial datatypes.

ArangoDB provides several data models, one being document storage. It
has a free community edition and a proprietary enterprise edition with
increased features and support. It supports geospatial within and near
queries [3]. It is ranked 10 in terms of popularity among all document
databases according to db-engines.com [22].

CosmosDB is a part of Microsoft’s Azure cloud services, having a free
trial period but is otherwise proprietary. It is a so-called multi-paradigm
DBMS, supporting document, graph, key-value and wide-column
models. It supports geospatial within, intersects and near queries [13].
Ranked 5 in terms of popularity among all document databases
according to db-engines.com [22].

Couchbase provides both an open-source community edition and a
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proprietary enterprise edition with increased support and features. It
only supports querying for locations within a bounding-box [7]. Ranked
3 in terms of popularity among all document databases according to
db-engines.com [22].

RethinkDB has no proprietary version. It supports geospatial intersects
and near queries [31]. Ranked 9 in terms of popularity among all
document databases according to db-engines.com [22].

MongoDB provides a free community edition and a proprietary version
in the form of server software or a cloud service. It supports geospatial
within, intersects and near queries [17]. Ranked 1 in terms of popularity
among all document databases according to db-engines.com [22].

3.2.2 MongoDB

Being a document database, MongoDB stores documents inside
collections. Collections are user-defined containers used to group
documents together. As explained earlier, collections put no
requirements on the structure of its documents, meaning the database is
schema-free [24]. Some homogeneity is however needed for efficiency, as
you need properties to place your indexes on.

Indexes are created on a collection basis. By default, all collections are
indexed on the "_id" field, MongoDB’s unique document identifier. The
user may create additional indexes on any field. The schema-free nature
implies that all documents in a collection might not contain the field of a
specific index. In this case, those documents are ignored by the index.

MongoDB provides two ways of querying data; operators and
aggregates. Operators can perform simpler tasks such as filtering,
searching indexes, ordering and performing arithmetic. Operators are
passed to MongoDB as a JSON object and compiled into a single query.
This is the primary query language of MongoDB and supports all of the
common functions needed in the document paradigm. The other
approach is the use of aggregates. Aggregates allow for more advanced
tasks, but come at a higher execution time. Aggregates can for example
be used to perform multi-stage queries following a pipeline-like
workflow. Since aggregates are more of a MongoDB feature than a
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paradigm property, they will not be further explored in this study.

MongoDB uses a JSON-like document format called Binary JSON
(BSON). The format was created by MongoDB to allow for more data
types than JSON [19]. When querying, it can be treated as JSON in most
cases. MongoDB supports both single field indexes and compound ones.
Compound indexes are used when a collection is often queried with a
combination of several fields. It also supports geospatial indexes. All
indexes use a B-tree structure, similar to most other DBMSs [18].

3.3 Converting Schemas to Documents

The dataset from Triona that this study is based around, currently has a
relational representation. For a comparison to be possible, a document
representation of the data is needed as well. There are several papers
written on the topic of converting relational schemas to document
structures. Different approaches can be more or less optimized for ease
of migration or performance of the resulting database. The approaches
can also differ in how much resemblance they strive to achieve between
the resulting document structure and the original relational schema. One
approach is to look at the schema and access logs of the RDBMS in order
to determine a suitable document representation. This way you can
construct the document representation based on access patterns and
optimize it according to those. An algorithm to perform such a
conversion is described by Jia et al. [24]. The algorithm can informally be
explained as follows:

1. Store a complete model of the relational schema.

2. Traverse the log of the relational database. Add "description tags"
to the stored model when certain constellations and values are
found in the log. The following description tags exist:

• Frequent JOIN - If two tables are found to be JOINed more
frequently than a predefined threshold, add this tag to their
relationship.

• Big Size - If the average size of the rows in a table is found to
exceed a predefined threshold, this tag is added to that table.
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• Frequent Modify - If the frequency of ALTER or DELETE
operations on a table exceed a predefined threshold, add this
tag to the table.

• Frequent Insert - If the frequency of INSERT operations on a
table exceed a predefined threshold, add this tag to the table.

3. When the description tags have been added, another set of tags
called "action tags" are generated. Action tags are what will be used
to create the final document structure. The action tags are
generated as follows:

(a) For each table, if marked with any of the description tags Big
Size, Frequent Modify or Frequent Insert, mark the table as not
eligible for embedding. Otherwise, mark the table as eligible
for embedding.

(b) For each 1:1 relationship, if the child table is marked as eligible
for embedding, mark relationship as embed child. If the child
is not eligible for embedding, but the parent is, mark the
relationship as embed parent. If neither are eligible for
embedding, mark relationship as reference.

(c) For each 1:N relationship, if the child entity is eligible for
embedding and the relationship has a Frequent JOIN tag, mark
relationship as embed child. Otherwise mark relationship as
reference.

(d) For each N:M relationship, mark relationship as reference.

4. The result is a directed graph where tables are nodes and
embeddings are directed edges, going from the table being
embedded to the table in which to be embedded. If this graph is
not a DAG, remove edges (turning embedding into referencing)
until all cycles have been removed. This is necessary because a
cycle of embedding cannot be implemented.

5. The document schema is now complete, consisting of the original
tables combined using the embedding and reference tags generated
by the algorithm.

The above algorithm covers most of the common strategies in document
modelling. It does however miss out on two-way embedding [33]. If two
documents contain information that is often retrieved together, but the
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documents are not suited for regular embedding, a two-way embedding
approach can be used instead. In this approach, the two documents, A
and B, will each contain an embedded mini-version of each other. The
mini-version of A, embedded into B, might only contain the most
important fields and vice versa. This way both documents can get the
querying speed advantages of embedding, while none of them get the
modelling constraints that come with it. The two-way embedding
approach does however imply duplication of data. So while it results in
faster reads, it also makes for slower and more complex writes, as several
locations need to be updated when a single record changes. Ultimately it
is a speed-simplicity trade-off whose viability has to be determined on
an application specific level.

MongoDB provides an official handbook for migrating a relational
database to MongoDB [20]. Most of the hints provided are in some way
covered in the above paragraphs, but a few new ones are presented. The
first one is that large hierarchical data should not rely solely on
embedding, due to the large memory footprint when dealing with those
documents. Another tip is to not combine frequently used data and
rarely used data in the same document. This is because a document
database will generally work with documents in their entirety, and so
can be cumbered by constantly loading seldomly used properties in and
out of memory. The last hint is that pieces of data which need to be
atomically updated together, need to be stored in the same document.
This is because MongoDB, like other document databases, do not
support atomic multi-document updates.

3.4 Benchmarking

Benchmarks can be used to attain a quantitative measurement of a
database’s performance. However, creating a good benchmark is a
difficult task. Huppler, from the TPC organization, points out three
characteristics of a good benchmark [28]:

• Relevance - A benchmark can only cover a limited amount of
cases. It is important to choose meaningful and representative
operations. Drawing conclusions about something not tested in the
benchmark will be difficult.
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• Repeatability - To ensure that separate runs can be compared in a
fair manner, the benchmark must give similar results for repeated
runs. Random elements must be performed in such a way that they
even out as much as possible.

• Fairness - The benchmark must not make design choices that favor
specific contenders, unless that choice is a deliberate and explicit
part of the benchmark.

TPC is a non-profit organization that designs benchmarks for RDBMSs.
They are widely acknowledged as the industry standard. They provide a
range of benchmarks designed to simulate different business cases.
However, none of the benchmark suites include geospatial data [36].

There are a few other suites around that aim specifically at
benchmarking the geospatial functionality of RDBMSs. The most
established ones are Jackpine, HSR benchmark and FOSS4G benchmark.
The suite from FOSS4G specializes in web map services, which is outside
the scope of this study [11]. The remaining two are described in the
following paragraphs.

The HSR benchmark was developed at University of Applied Sciences
Rapperswil. It is an open-source benchmark covering the most basic
geospatial operations. It consists of 4 different operations performed on a
real-world dataset. The first operation is a non-spatial count, as querying
for metadata is an important part in the workload of a geospatial
database. The second query is a spatial intersects-query with a bounding
box. The third is a spatial near-query asking for all points within a
distance from a point. The last one is a spatial intersection between
railroads and lakes in the dataset. The queries are run three times each
with random parameters (bounding box, point for the radius etc). Only
the third run is timed, so as to benchmark the system in a ’hot’ state [35].

Jackpine is an open-source benchmark developed by researchers at the
University of Toronto. Like HSR, it performs its queries on an included
real-world dataset. The test suite consists of querying for each of the 9
extended topological relations defined by Egenhofer [10]. The
benchmarker begins by running warm-up rounds for each query and
then goes on to perform several timed queries. The result is calculated as
the sum of each query types’ average execution time [30].
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All of the previously mentioned benchmarks are implemented with
RDBMSs in mind only. When it comes to benchmarking NoSQL DBMSs
there is only one established option available. Yahoo Cloud Service
Benchmark (YCSB) is an extensible open-source benchmarking
framework aimed at all major NoSQL databases. It does not include
support for RDBMSs. The framework does not come with any data, but
instead includes a data generator. Its suites are constructed to be long
series of reads and writes at a proportion defined by the user. The
framework focuses on measuring latency and throughput. To measure
these it makes use of several threads. Latency is determined by putting a
moderate load on the database and taking the average response time.
Throughput is determined by increasing the load on the database until
its serve rate no longer increases. The throughput is then said to be the
number of requests served on average per second at this state. YCSB
currently does not support benchmarking of geospatial data [6].

3.5 Related Studies

There have been many studies performed around comparing DBMSs.
Most only focus on relational databases, making them less relevant to
this study. When it comes to explicitly comparing relational databases to
NoSQL databases the amount of credible scientific sources are
considerably fewer. Blog posts and self-published discussions exist in
large numbers, but are of little value to this report due to the difficulty of
establishing their validity. This section aims to summarize the most
relevant sources of credible and relevant studies in the area.

Zhang et al. [37] identify the growing need to store large unstructured
data with geospatial elements mixed in. This need stems from the rise of
location-based services and similar applications. They explain why
relational databases, which have dominated the geospatial domain for
long, are not ideal for this kind of data. Instead, they propose MongoDB
as an alternative due to its fitting data model and horizontal scaling
among other reasons. The paper goes on to claim that MongoDB is an
efficient alternative to RDBMSs for this application, but lacks data to
back up this claim.
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Agarwal & Rajan [2] acknowledge that NoSQL databases give both
advantages and disadvantages over relational ones, depending on what
is being compared. In their paper, they investigate the advantages
MongoDB could present when working with spatial and non-spatial
data mixed together. They perform a series of experiments around
querying for restaurants and related properties from a real-world
dataset. In their experiment, MongoDB is compared to the RDBMS
PostgreSQL. The conclusion is that MongoDB is faster than PostgreSQL
by about one order of magnitude for all categories tested.

Parker et al. [29] observe that very few comparisons between NoSQL
databases and relational ones exist. They expand the knowledge in the
area by performing a series of experiments on MongoDB and Microsoft
SQL Server. They define a schema consisting of three different tables
with relationships to each other. The three tables are represented by one
collection each in MongoDB, using only references to relate documents.
The authors perform a series of tests looking at different variations of
inserts, updates and reads. Most of the results speak in favor of
MongoDB although SQL Server was faster in a few cases. Each test was
run 100 times to obtain an average, but a few anomalies in the data exist.

Schmid et al. [32] look at NoSQL databases as an option for storing
geospatial data. They claim that only the document and graph
paradigms of NoSQL are seeing any noticeable use in combination with
geospatial data at the moment. The paper goes on to compare the
performances of MongoDB, Couchbase and PostgreSQL. The results
show an order of magnitude faster execution for the two document
databases when retrieving non-spatial data. For the geospatial data, only
MongoDB and PostgreSQL are tested. The results indicate that
PostgreSQL is faster for data in the megabyte ranges, while MongoDB is
faster in the gigabyte ranges.
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Method
This chapter begins by forming a hypothesis for the outcome of the study, based
on the theoretical background. The chapter then describes the choice of paradigm
representatives, along with the dataset used in the study. Finally, the benchmark
suite is presented.

4.1 Hypothesis

Recall the research question:

"How do relational and document databases compare in terms
of throughput and latency when storing hierarchically structured
geospatial data on a single node?".

Given the theory presented in the previous chapter, this section derives
some hypotheses about what throughput and latency to expect in the
experiment. First we consider read-queries only, and then expand to
include writes.

To begin with, it seems reasonable to expect that that the
throughput-latency relationship will look approximately the same for
both paradigms. Having a high throughput relative to the latency would
indicate superior concurrency. While the document paradigm is
designed to handle many simultaneous requests, that ability usually
comes from horizontal scaling. As this study only considers a use case
with a single machine, horizontal scaling will not come into play. Also,
the limitations imposed by ACID should have equal impact on both
metrics. Since latency and throughput are hypothesized to behave
similarly, they will both be referred to as ’performance’ for the remainder
of this section.

22
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Secondly, the document paradigm can be expected to handle hierarchies
faster whenever document embedding can be used. This is because the
relational paradigm has to JOIN data from several tables when querying
for a full hierarchy, incurring some overhead. Document embedding
avoids this runtime collation of entities by keeping all data in the same
document. However, document embedding is not suitable for every
situation, as explained in the previous chapter. When not suitable, the
document paradigm has to resort to document referencing. Looking up a
document reference requires an index search similar to that in a
relational JOIN. On top of that, looking up document references require
an additional query. This means a reference should generally be slower
to work with than a foreign key. However, this can be counter-balanced
by the fact that fewer references are needed in a document model, than
foreign keys in a relational model. It is therefore reasonable to expect
that the two paradigms will perform about equally well on hierarchies
where some document referencing is needed.

Thirdly, both paradigms can be expected to be about equally fast for
read-only queries on geometries. This is because none of the paradigms
have any outstanding properties that should affect this scenario.

Fourthly, the document paradigm can be expected to be faster when
handling the metadata of the geometries. This metadata is usually of a
shallow hierarchical structure, with sparsely populated properties and a
lack of uniformity across records. The performance in regards to
hierarchies has already been discussed and should apply here as well.
However, because the hierarchies here are usually shallow, the document
paradigm’s advantage should not be as impactful. Regarding the
non-uniformity and sparsities, the relational paradigm will likely see
reduced performance due to its rigid schema model. The main problem
with the relational schema in this case is that entities either have to be
separated into very many tables, or have large parts of its record consist
of mostly NULL values. Both approaches have negative performance
implications as one requires additional JOINs and the other increases the
memory footprint (which may indirectly decrease the performance). The
document paradigm on the other hand can store the data in a single
document and omit unpopulated properties. This technique should
avoid the issues present in the two relational approaches.
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Thus far only read queries have been considered. When introducing
write queries, the relational paradigm can be expected to see a greater
reduction in performance than the document paradigm. This would
mainly be caused by the locks used by the relational paradigm. While
likely affecting all queries, these locks may be particularly impactful on
geospatial data for two reasons. Firstly, geospatial queries generally
involve checks against many records, meaning that even locks on single
records may put queries on hold. Secondly, geometric features have
bigger variations in size than most other datatypes, increasing the
likelihood of having to reorganize the record layout in memory after an
update. During such a reorganization, a relational database may have to
lock an entire table, greatly impacting the performance.

Finally, one other factor that could impact the performance in all of the
above cases is the benefit of a strict schema. Since relational databases
define how each record should look, the database has a better knowledge
of its records. However, while this allows for certain optimizations, those
are hypothesized to be less impactful than the previously mentioned
performance factors.

4.2 Choice of Representatives

In order to have something to benchmark, one DBMS per paradigm is
chosen as a representative. The representatives are chosen carefully in
order for the results to be as generalizable as possible for the paradigms.
Unfortunately, there is no such thing as a perfect choice here, but due to
time constraints, this approach is still deemed the most feasible.

The most important requirement for the representative is to support
geospatial operations and indexing. A threshold for this is set at
supporting at least two of the three most common spatial operations
(within, intersects, near). This is to ensure that some geospatial queries
can be used in the benchmark suite. The representatives should also be
among the most performant DBMSs in their respective paradigms to
give a fair assessment of the paradigms’ capabilities.

Starting with the relational paradigm, there are many DBMSs on the
market. Geospatial operations are widely supported in this paradigm,
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giving a large selection of candidates. It is however difficult to find
useful performance metrics. Most comparisons focus on specific business
scenarios that have little or no similarity to this study. According to the
userbase of G2 Crowd, an established peer-to-peer business review
platform, the three most performant RDBMSs in general are Microsoft
SQL Server, Oracle Database and MySQL [8]. These are also the three
highest ranked RDBMSs in terms of popularity at db-engines.com [22]. All
three DBMSs have among the most developed sets of spatial operations,
offering the usual within, intersects & near operations along with many
more. As they all have very similar qualifications, the choice between
them is arbitrary. This study chooses to use Microsoft SQL Server.

The document representative is more difficult to determine, as the
paradigm is younger and more volatile. CosmosDB is however
immediately excluded from consideration due to supporting multiple
paradigms. While the DBMS can be run in a document-mode, it is
difficult to determine what is going on beneath. All of the surveyed
DBMSs support geospatial indexing, but differ on which geospatial
operations they offer. Couchbase only supports a within-bounding-box
operation and is therefore excluded as well. Of the remaining ones,
RethinkDB and ArangoDB each support two, while MongoDB supports
all three considered geospatial operations. Regarding performance, it is
difficult to find reliable metrics. Not a single benchmark could be found
including all three DBMSs at the same time. Most of the benchmarks
around are performed by parties with business interests in the area,
making the numbers unreliable. MongoDB is currently seeing roughly
100 times more usage than the other two candidates according to
db-engines.com [22]. While a widespread adoption does not ensure a high
performance, it makes it unlikely that MongoDB would be considerably
worse than the other two. This, combined with having the best support
for geospatial operations, leads the study to choose MongoDB as its
document paradigm representative.

4.3 The Dataset

The dataset chosen for this study consists of tables from a forestry
database. The data centers around forest remedies and has a hierarchical
structure. The hierarchies are formed both from inheritance and
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parent-child data relationships. It is difficult to give a precise description
of the structure without favoring a specific modelling strategy. The
complete data model will therefore be shown in both a relational
representation (fig. 4.1) and a document representation (fig. 4.2). These
representations are the same ones used in the benchmark.

Figure 4.1: The relational representation of the dataset. Columns that are not important
for understanding the model and benchmarking process have been renamed to numbers.
The columns central to the benchmark (apart from primary and foreign keys) have been
highlighted in red.

The modelled data is all rooted in being part of a remedy, called Atgard
in the model. All remedies share some information such as a geometry,
an id and a few more properties. There are several types of forest
remedies available. The part selected for this study only includes one
such remedy, logging or Avverkning in the schema. There are in turn
several types of logging remedies, five of which are present in the
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selected part of the dataset (Gallring, NsAvverkning,
Foryngringsavverkning, AvverkningEnergived, OvrigAvverkning). Finally
one of the logging subtypes has yet another subtype, AvverkningVagLedn.

Figure 4.2: The Document representation of the dataset. The same name simplification
schema has been applied as in the relational model. Fields central to the benchmark
have been highlighted in red. Fields specific to the document representation have been
highlighted in green.

Two distinct types of hierarchies can be identified in the dataset. The first
one is the overall tree-like shape of the data. At the root is a remedy,
which has several children, which in turn has children etc. The other
kind of hierarchy is the remedy subtyping, resulting in an inheritance
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hierarchy. Both of these hierarchies can be modelled in several ways,
described in the theoretical chapter. The preferred way to model them
differs between the relational and document paradigms.

The model chosen for the relational database was constructed to
normalize data as much as possible. Self-contained groups of data were
broken out to form child tables, linked using the Atgard id as foreign
key. This way the child tables only need to instantiate rows for an Atgard
that defines data related to that child table. The child tables also prevent
the Atgard table from growing into hundreds of columns, which would
lead to a large number of NULL values.

The inheritance hierarchy in the dataset is structured in such a way that
no useful abstract types can be created. The class table inheritance and
concrete table inheritance approaches described in the theoretical chapter
will therefore give the same result. This result is what was used in the
relational representation. The other option described in the theoretical
chapter is single table inheritance, which creates a single table including
all columns from all subtypes. This would lead to a large number of
NULL values for each Atgard row, since many columns are not
applicable to most rows. Single table inheritance is therefore not used.

The model chosen for the document database is based on Jia’s algorithm
and MongoDB’s migration guide, both introduced in the theoretical
chapter. Instead of implementing Jia’s algorithm in software however, it
was used as a guideline when converting. The choice of Jia’s algorithm
was made somewhat arbitrarily and could have been replaced. It is
however a straightforward algorithm and produces models that adhere
to general guidelines for document databases.

Starting from the relational representation described earlier in this
section, Jia’s algorithm can be applied as follows. All tables are marked
with FREQUENT JOIN, since the entire hierarchy will be retrieved
together in some queries in the benchmark. Since modifications will not
be the primary concern of the benchmark, none of the tables are marked
with FREQUENT MODIFY or FREQUENT INSERT. As it is now, none of
the tables are deemed to have a BIG SIZE.

Using the tags, we can begin by embedding all 1:1 relationships into
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Atgard, except the ones that are part of the inheritance. TradUttag can
also be embedded into MattillfalleTrad which can in turn be embedded
into Mattillfalle. Mattillfalle has now become rather large and is therefore
given the BIG SIZE tag. This tag indicates that Mattillfalle should be
referenced instead of embedded to avoid creating documents that are too
large. Since KopplatDrivningsInfo is only used to represent an N:M
relationship it is omitted from the model. DrivningsInfo is instead
referenced as prescribed by the algorithm. Finally, all fields from the
inheritance hierarchy are embedded into the Atgard document. This can
be performed without storing NULL values due to the schema-less
nature of document databases. When embedded into Atgard the
hierarchy can be further optimized by only using flat values to represent
the subtypes. This results in the green fields in fig. 4.2. Note that of the
fields in the representation, each document will only define those
relevant to its data record. All in all the algorithm results in the three
document collections Atgard, DrivningsInfo and Mattillfalle shown in
fig. 4.2.

Last of all the databases were given indexes on all properties that could
be beneficial in the benchmark. For the relational database, this meant all
id columns and those marked with red in fig. 4.1. Clustering indexes
were placed on the id columns. For the document database, indexes
were placed on the _id fields and the id field in Atgard. They were also
placed on all fields marked with red in fig. 4.2.

4.4 Benchmarking

The main goal of the study is to find out how the document and the
relational paradigm compare in terms of latency and throughput when
storing hierarchical geospatial data. With the data models completed
and paradigm representatives chosen, only the performance
measurement remains. One way to measure performance is through the
use of a benchmark suite. However, as found in the theoretical chapter,
there is no straightforward choice available for this particular study.
While Jackpine and HSR are established benchmarks for geospatial data,
they are constructed with only RDBMSs in mind. They rely on several
geospatial operations not yet present in document DBMSs and only
implement RDBMS interfaces. YCSB on the other hand, being the
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defacto standard for NoSQL benchmarking, provides no geospatial
support. Its implementation also does not support RDBMSs as of today.

To solve the benchmarking problem, there are two possible approaches.
Either extend one of the mentioned benchmarks to provide the correct
support, or write one from scratch. For this study, it was deemed most
feasible to implement one from scratch, as the modifications needed on
the other benchmarks are substantial.

4.4.1 The Constructed Benchmark

To make sure the constructed benchmark yields reliable results, it has
taken its main design ideas from Jackpine, HSR and YCSB. It is also
constructed with Huppler’s three characteristics of a good benchmark in
mind.

The basic framework consists of a C# main thread that starts query tasks
in asynchronous threads. The query tasks join a connection pool towards
the desired database and proceed to start querying that database a set
number of times. Each query is timed and in the end all result are
reported to the main thread. The number of tasks can be varied in order
to increase the load beyond what you could get with a single thread. One
or two tasks can be used to measure the latency of the DBMS under a
moderate load. The number of tasks can then be increased until the total
throughput no longer rises, in order to find the maximum throughput.
This architecture closely resembles that of YCSB.

Before starting the timer, each task will perform a number of warm-up
queries. This ensures necessary parts of the database are loaded into
memory and so gives a fair assessment. This idea is used in both YCSB
and Jackpine. A set of queries were defined to test different properties of
the paradigms. These queries were largely based on those present in
HSR and Jackpine, with non-applicable ones excluded and a few new
ones added. The added queries center around the hierarchical and
sparse aspects of the data. The query set for the benchmark consists of:

• Atgard by Id - Retrieve an entire Atgard with all of its children. A
random Atgard Id is used as key. This query tests how fast the
DBMS can puzzle together all parts of the hierarchy.
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• Batch Mattillfalle by Atgard - Retrieve all Mattillfalle linked to 100
random Atgard instances. A random range of 100 consecutive
Atgard Ids is used as key. This query tests the performance of 1:N
relationships using foreign keys vs a mix of embeddings and
references.

• Count Atgard Complex - Count all Atgard matching a constraint
on the properties Langd and PlaneradDatum. Random values for the
two properties are used as keys. This query tests the database’s
ability to filter documents on two sparsely populated properties at
once. Note that Langd is situated 3 levels down in the relational
inheritance hierarchy. Also note that only about 0.5% of all Atgard
are of the subtype in which Langd is defined.

• Count Within Atgard - Count the number of DrivningsInfo
geographically situated within the geometry of an Atgard. The
Atgard is chosen randomly by Id. This query tests the performance
of the geospatial within-geometry operation.

• Count Within Box - Count the number of Atgard geographically
situated within a randomly generated bounding box. The box
consists of the rectangle formed by two points randomly placed
anywhere in Sweden. This query tests the performance for
geospatial within with large bounding boxes.

• Count Within Box and Langd - Count the number of Atgard
geographically situated within a randomly generated bounding
box and matching a constraint on Langd. The box consists of the
rectangle formed by two points randomly placed anywhere in
Sweden. The value for Langd is chosen at random from the interval
of values present in the database. This query tests the performance
for large bounding boxes when also filtering the result on
geospatial metadata.

• Count Intersects - Count the number of Atgard geographically
intersecting a randomly generated box. The box consists of the
rectangle formed by two points randomly placed anywhere in
Sweden. This query tests the performance of the geospatial
intersects operation for large geometries.

• Count Near - Count the number of Atgard geographically situated
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within 10000 meters of a random point in Sweden. This query tests
the performance of the geospatial near query.

To fulfill Huppler’s criteria, the benchmark suite attempts to cover a
wide selection of queries and run each many times to even out any
unfairness introduced from randomized parameters. The suite also
makes paradigm specific implementations of each query. This is to make
sure the queries are implemented in an suitable manner for each
paradigm.

Many benchmarks attempt to combine the results of several types of
queries into a single scalar. This may be useful for very specific
application areas where the proportions of operations are well known.
This benchmark does however not attempt such a unified metric.
Instead, each query type has its numbers presented individually. This
approach, combined with a wide selection of queries, allow the results to
be useful for many different application scenarios.

4.4.2 Running the Benchmark

The suite ran on three different database sizes, each differing in size by a
factor five. The sizes used were 40k, 200k and 1000k Atgard records. The
size variations were used to test performance scaling with database size.
For size reference, the average record in the relational database was
about 3kB large, indexes included.

Three different kinds of tests were performed. The first kind was latency.
For these tests, a single reading task and no writing tasks were used. The
task was executed for 20 minutes for each of the query types on each
paradigm representative. This process was repeated for all three
database sizes.

The second kind of test was throughput. For these tests, the number of
reading threads was chosen to give as high throughput as possible. The
number varied for each combination of parameters and was found
through trial and error. The measured execution ran for 20 minutes per
query type on each paradigm representative. The process was repeated
for all three database sizes.
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The third kind of test was read throughput during simultaneous writes.
Since different applications can have varying ratios of read and write
operations, several ratios were covered. The covered ratios of reads to
writes were 0, 0.5, 1 and 2 respectively for each round. The number of
total threads used in a run was determined the same way as in the
previous test. The measured executions ran for 20 minutes per query
type on each paradigm representative. Only the 1000k record database
was used for these tests, as it would have taken too much time
otherwise. The writing threads used a simple write operation designed
to give changes on all properties used by queries in the benchmark. Only
the reading threads were timed.

At the beginning of each measured execution, 100 warm-up queries were
performed. This number was set arbitrarily, but experimenting indicated
that a higher number gave no noticeable difference. Before starting the
benchmarking process, the relational DBMS was given an opportunity to
generate statistics for query optimization. MongoDB performs all such
optimizations automatically and was therefore not subject to this.

All tests ran on a single machine. Below are the most relevant
specifications for that machine.

• Processor: Intel(R) Core i7-4800MQ CPU @2.70GHz

• Secondary Memory: SAMSUNG SSD SM841 2.5” 256GB

• RAM Size: 16 GB

• OS: 64-bit Windows 10
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Results
This chapter presents the results obtained from running the benchmark
as described in the previous chapter. The results consist of 24 charts,
gathered into three groups of eight. Each chart consists of two curves,
showing the respective results of MongoDB and Microsoft SQL Server
(MSSQLS).

The first group of charts consists of figs. 5.1-5.8. This group shows the
average read latency for each of the eight queries in the benchmark. The
latency has been measured for three different database sizes, labeled S,
M and L. These labels correspond to having 40k, 200k and 1000k records
respectively.

The second group of charts consists of figs. 5.9-5.16. This group shows
the average read throughput for each of the eight queries in the
benchmark. The throughput has been measured for the same database
sizes as described in the previous paragraph.

The third group of charts consists of figs. 5.17-5.24. This group shows the
average read throughput for each of the eight queries in the benchmark,
while simultaneously experiencing writes. For these charts the database
size is fixed at L. Instead, the varying parameter is the write-to-read ratio.
The ratios used were 0, 0.5, 1 and 2 respectively. Write operations are not
part of the throughput metric and only serve to stress the database.

The rest of this chapter consists of figures. Note that all charts use a
logarithmic scale on the vertical axis. Also note that the vertical axis has
been fitted to the data, meaning the axis does not start at zero. A
discussion of the results is carried out in the next chapter.
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Figure 5.1: Atgard by Id. Figure 5.2: Batch Mattillfalle by Atgard.

Figure 5.3: Count Atgard Complex. Figure 5.4: Count Within Atgard.

Figure 5.5: Count Within Box. Figure 5.6: Count Within Box and Langd.

Figure 5.7: Count Intersects. Figure 5.8: Count Near.
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Figure 5.9: Atgard by Id. Figure 5.10: Batch Mattillfalle by Atgard.

Figure 5.11: Count Atgard Complex. Figure 5.12: Count Within Atgard.

Figure 5.13: Count Within Box. Figure 5.14: Count Within Box and Langd.

Figure 5.15: Count Intersects. Figure 5.16: Count Near.
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Figure 5.17: Atgard by Id. Figure 5.18: Batch Mattillfalle by Atgard.

Figure 5.19: Count Atgard Complex. Figure 5.20: Count Within Atgard.

Figure 5.21: Count Within Box. Figure 5.22: Count Within Box and Langd.

Figure 5.23: Count Intersects. Figure 5.24: Count Near.



Chapter 6

Conclusion
This chapter discusses the obtained results, relating them to the theoretical
chapter and the hypothesis. Towards the end, the research question is addressed
and further studies are proposed.

6.1 Discussion

As hypothesized in the method chapter, throughput and latency
behaved similarly throughout the benchmark. Comparing figs. 5.1-5.8
with 5.9-5.16, this observation is made evident. Given this result, the
discussion can focus on throughput only (figs. 5.9-5.24) without loss of
generality.

Looking at specific queries, it can be seen that the document paradigm
achieves approximately three times higher throughput for Atgard by Id
(fig. 5.9). This query consists of finding and collating all parts of an
Atgard, spread over the hierarchy. The result falls in line with the second
hypothesis, which predicted that the document paradigm would be
faster for this type of query. As stated in the hypothesis, a reasonable
explanation is that document embedding reduces the number of
operations needed to collate an Atgard, giving the document paradigm
an advantage. The results from this query are of particular importance,
as hierarchy collation is a central part of the study.

Looking at Batch Mattillfalle by Atgard (fig. 5.10), the document paradigm
achieves approximately four times higher throughput. This query
consists of retrieving child entities in a 1:N relationship. The result points
towards the document paradigm being stronger here as well. It was
hypothesized that these types of relationships, where embedding and
referencing are mixed, would perform about equally well for both
paradigms. This was however not the case here. A possible explanation
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is that the document version of the relationship only required one
reference per entity, with the rest being modelled with embedding. The
disadvantages from referencing might therefore have been outweighed
by the advantages from embedding.

Count Atgard Complex (fig. 5.11) shows some interesting results. This
query counts the number of Atgard having specific values for two
sparsely populated properties far out in the hierarchy. This is again a
situation where this study hypothesized that document embedding
would outperform relational JOINs. However, the results from this
query show a slight advantage in favor of the relational paradigm. A
possible explanation for this unexpected result is that the document
paradigm saw a disadvantage from its documents generally being much
larger than individual table rows. To fully understand this speculation,
consider that the query filters records on two properties. While these
properties were both indexed, they did not reside in the same
table/sub-document. The database therefore had to retrieve and
correlate records based on the index hits. In the case of the document
paradigm, this meant retrieving many large documents. The relational
paradigm however, would only need to retrieve the relatively small rows
needed to properly related the two index hits. The relational database
model would therefore seem to have an important advantage that was
not properly considered in the hypothesis.

Looking at the read-only spatial queries, there are some mixed results.
The document paradigm performs better on two of the
geometry-oriented queries (figs. 5.12 & 5.13). However, the relational
paradigm performs better on the other two (figs. 5.15 & 5.16). This result
falls more or less in line with the third hypothesis, which stated that
none of the paradigms have any apparent reason to be faster at simple
geometry reads. The fifth geospatial query (fig. 5.14) combines geometry
and metadata querying. This type of query was hypothesized to favor
the document paradigm. However, the query saw a higher throughput
from the relational database. Due to the similarities with the query in fig.
5.11, the results can be explained similarly.

Finally, looking at the write influenced queries (figs. 5.17-5.24), a clear
picture is painted. It was hypothesized that the document paradigm
would suffer less throughput degradation during simultaneous write
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operations. This is precisely what the results seem to indicate. Figs. 5.18,
5.21 & 5.24 in particular show considerably stronger results for the
document paradigm. To a lesser extent, this can also be seen in figures
5.19, 5.20 & 5.22. The hypothesis provided a reasonable explanation for
this, revolving around the different consistency models employed by the
paradigms. It stated that because the relational paradigm adheres to
ACID, it cannot easily parallelize read-write mixes of operation to the
same extent as a BASE-adhering paradigm. In the method chapter, it was
also hypothesized that geospatial queries would be impacted more than
other query types when adding writes to the relational paradigm.
However, the results show no compelling evidence of that being the case.

6.2 Addressing the Research Question

The research question is once again recalled:

"How do relational and document databases compare in terms
of throughput and latency when storing hierarchically structured
geospatial data on a single node?".

Altogether, the document paradigm showed potential when querying
hierarchically structured data alone. The paradigm saw superior
performance for all such queries, except when querying on multiple,
sparsely populated properties. With geospatial data added, no decisive
conclusions could be drawn for read-only queries. However, when
adding simultaneous write operations, the document paradigm saw less
performance degradation than the relational paradigm did for all tested
queries.

An important thing to remember in this study though, is that the
DBMSs’ performances are not only dependent on their underlying
paradigm. While all DBMSs in the same paradigm have key design
points in common, they also make DBMS specific design choices. As
such, the results need to be interpreted as indications about the
paradigms’ relative performances, rather than conclusive evidence. With
that in mind, the document paradigm has shown reasonable potential
when working with hierarchical data, but is in need of further
investigation when adding geospatial data to the mix.
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6.3 Future Work

To further explore optimal databases for hierarchical geospatial data, a
few areas of study are suggested. First of all, a study focused solely on
geospatial data might lead to more decisive results than presented in this
study. It could also be interesting to have a deeper look into how
hierarchies should be modelled for optimal performance in a document
database. A more extensive benchmark, perhaps including several
DBMSs from each paradigm, could also be of interest. Finally, it could be
fruitful to perform a similar study on the graph paradigm, as that
paradigm also showed potential in the background chapter.
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